Math 206B Lecture 2 Notes

Daniel Raban

January 9, 2019

1 Representation Theory of Finite Groups

This is meant to remind you of basic results in representation theory. Good references are Chapter 1 of Sagan's book and the book by Fulton and Harris.¹

1.1 Conjugacy classes and characters

Let G be a finite group. There is an action of G on G in the following way: $a \cdot g = aga^{-1}$. This is the action of conjugation, where conjugacy classes are the orbits of the action. In other words, $g \sim h$ if $g = aha^{-1}$ for some $a \in G$; conjugacy classes are equivalence classes under this relation. We will denote c(G) as the number of conjugacy classes of G.

Example 1.1. Let $G = \mathbb{Z}_n$ be the cyclic group of order n. Then $c(\mathbb{Z}_n) = n$.

Example 1.2. Let $G = S_n$. Then $c(S_n) = p(n)$, the number of integer partitions of n.

Definition 1.1. A character $\chi_1: G \to \mathbb{C}$ is a function such that $\chi(g) = \chi(h)$ whenever $g \sim h$.

Example 1.3. The trivial character is $\chi(g) = 1$ for all g.

Example 1.4. Let $G = S_n$. The sign character is $\chi(\sigma) = \text{sign}(\sigma)$.

Theorem 1.1. $\dim(\operatorname{span}(\operatorname{characters} \chi) = c(G)$.

Definition 1.2. The **inner product** on characters is defined as

$$\langle \chi, \psi \rangle = \frac{1}{|G|} \sum_{g \in G} \chi(g) \overline{\psi(g)}.$$

Example 1.5. If $n \geq 2$, then

$$\langle \chi, \operatorname{sign} \rangle = \frac{1}{n!} \sum_{\sigma \in S_n} \operatorname{sign}(\sigma) \cdot 1 = \frac{1}{n!} \left(\frac{n!}{2} - \frac{n!}{2} \right) = 0.$$

Example 1.6. Suppose $G = \mathbb{Z}_n$. Let $\omega = e^{2\pi i/n}$. For each j, we have a character $\chi_j(k) = \omega^{jk}$.

¹This is Professor Pak's opinion. I hate this book.

1.2 Linear representations

Let $V = \mathbb{C}^d$. The group $GL(V) = GL_d(\mathbb{C})$ is the group of automorphisms of V.

Definition 1.3. A representation is a group homomorphism $\rho: G \to GL(V)$.

Here are operations we can do on representations:

- 1. If we have $\rho: G \to GL(V), \pi: G \to GL(W)$, then we can form $\rho \oplus \pi: G \to GL(V \oplus W)$ by acting on the individual parts of the vector space by the respective actions.
- 2. We can form $\rho \otimes \pi : G \to \operatorname{GL}(V \otimes W)$. The dimension of $\rho \otimes \pi$ is $\dim(V) \dim(W)$.
- 3. Reduced representations: If we have $\rho: G \to \mathrm{GL}(V)$ and $H \leq G$, we can define $\rho \downarrow_H^G$ as the restriction of ρ to H.
- 4. Induced representations: If we have $\pi: H \to GL(W)$, there is an induced representation $\pi \uparrow_H^G: G \to \operatorname{GL}(W^{\otimes h})$, where h:=[G:H]=|G|/|H|.

Example 1.7. The trivial representation maps $g \mapsto id_V$ for all $g \in G$.

Example 1.8. The regular representation $\pi: G \to \mathrm{GL}(\mathbb{C}^{|G|})$ acts on a basis indexed by all $g \in G$ by $a \cdot v_g = v_{ag}$.

Example 1.9. The natural representation $\rho: S_n \to \mathrm{GL}_n(\mathbb{C})$ sends σ to its permutation matrix (applying the permutation to the basis vectors $\{e_1, \ldots, e_n\}$).

If we have a representation ρ : G to GL(V), we can define its character $\chi_r ho$ by $\chi_{\rho}(g) = \text{tr}([\rho(g)])$. Since tr(AB) = tr(BA), $\text{tr}(BAB^{-1}) = \text{tr}(A)$. So χ_{ρ} is in fact a character in the previous sense.

Remark 1.1. Even though tr(AB) = tr(BA), then $tr(ABC) \neq tr(CBA)$.

We also have tr(A+B) = tr(A) + tr(B). However, we do not have tr(AB) = tr(A) tr(B).

Example 1.10. Let π be the regular representation of G. Then

$$\chi_{\pi}(\sigma) = \begin{cases} n! & \sigma = 1\\ 0 & \sigma \neq 1. \end{cases}$$

Example 1.11. Let ρ be the natural representation of S_n . Then $\chi_{\rho}(\sigma)$ is the number of fixed points of σ .

Example 1.12. Here is an example of a reduced representation. Let $G = S_n$, and $H = \mathbb{Z}_n$. Let ρ be the natural representation of S_n . Then $\rho \downarrow_{\mathbb{Z}_n}^{S_n}$ is the regular representation of \mathbb{Z}_n .